Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607034

RESUMO

The aim of this article is to describe sustained myopic eye growth's effect on astrocyte cellular distribution and its association with inner retinal layer thicknesses. Astrocyte density and distribution, retinal nerve fiber layer (RNFL), ganglion cell layer, and inner plexiform layer (IPL) thicknesses were assessed using immunochemistry and spectral-domain optical coherence tomography on seventeen common marmoset retinas (Callithrix jacchus): six induced with myopia from 2 to 6 months of age (6-month-old myopes), three induced with myopia from 2 to 12 months of age (12-month-old myopes), five age-matched 6-month-old controls, and three age-matched 12-month-old controls. Untreated marmoset eyes grew normally, and both RNFL and IPL thicknesses did not change with age, with astrocyte numbers correlating to RNFL and IPL thicknesses in both control age groups. Myopic marmosets did not follow this trend and, instead, exhibited decreased astrocyte density, increased GFAP+ spatial coverage, and thinner RNFL and IPL, all of which worsened over time. Myopic changes in astrocyte density, GFAP+ spatial coverage and inner retinal layer thicknesses suggest astrocyte template reorganization during myopia development and progression which increased over time. Whether or not these changes are constructive or destructive to the retina still remains to be assessed.


Assuntos
Miopia , Células Ganglionares da Retina , Animais , Astrócitos , Fibras Nervosas , Retina , Tomografia de Coerência Óptica/métodos , Callithrix
2.
Front Med (Lausanne) ; 10: 1112396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601788

RESUMO

The retinal vasculature supplies oxygen and nutrition to the cells and is crucial for an adequate retinal function. In myopia, excessive eye growth is associated with various anatomical changes that can lead to myopia-related complications. However, how myopia-induced ocular growth affects the integrity of the aged retinal microvasculature at the cellular level is not well understood. Here, we studied how aging interacts with myopia-induced alteration of the retinal microvasculature in fourteen marmoset retinas (Callithrix jacchus). String vessel and capillary branchpoint were imaged and quantified in all four capillary plexi of the retinal vasculature. As marmosets with lens-induced myopia aged, they developed increasing numbers of string vessels in all four vascular plexi, with increased vessel branchpoints in the parafoveal and peripapillary retina and decreased vessel branchpoints in the peripheral retina. These myopia-induced changes to the retinal microvasculature suggest an adaptive reorganization of the retinal microvascular cellular structure template with aging and during myopia development and progression.

3.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682880

RESUMO

To describe the effect of myopic eye growth on the structure and distribution of astrocytes, vasculature, and retinal nerve fiber layer thickness, which are critical for inner retinal tissue homeostasis and survival. Astrocyte and capillary distribution, retinal nerve fiber (RNFL), and ganglion cell layer (GCL) thicknesses were assessed using immunochemistry and spectral domain optical coherence tomography on eleven retinas of juvenile common marmosets (Callithrix Jacchus), six of which were induced with lens-induced myopia (refraction, Rx: -7.01 ± 1.8D). Five untreated age-matched juvenile marmoset retinas were used as controls (Rx: -0.74 ± 0.4D). Untreated marmoset eyes grew normally, their RNFL thickened and their astrocyte numbers were associated with RNFL thickness. Marmosets with induced myopia did not show this trend and, on the contrary, had reduced astrocyte numbers, increased GFAP-immunopositive staining, thinner RNFL, lower peripheral capillary branching, and increased numbers of string vessels. The myopic changes in retinal astrocytes, vasculature, and retinal nerve fiber layer thickness suggest a reorganization of the astrocyte and vascular templates during myopia development and progression. Whether these adaptations are beneficial or harmful to the retina remains to be investigated.


Assuntos
Miopia , Células Ganglionares da Retina , Humanos , Neuroglia , Retina , Vasos Retinianos , Tomografia de Coerência Óptica/métodos
4.
Invest Ophthalmol Vis Sci ; 62(14): 27, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846518

RESUMO

Purpose: Retinal astrocytes abundantly express connexin 43 (Cx43), a transmembrane protein that forms gap junction (GJ) channels and unopposed hemichannels. While it is well established that Cx43 is upregulated in retinal injuries, it is unclear whether astrocytic Cx43 plays a role in retinal ganglion cell (RGC) loss associated with injury. Here, we investigated the effect of astrocyte-specific deletion of Cx43 (Cx43KO) and channel inhibitors on RGC loss in retinal ischemia/reperfusion (I/R) injury and assessed changes in expression and GJ channel and hemichannel function that occur in I/R injury. The effect of Cx43 deletion on neural function in the uninjured retina was also assessed. Methods: Cx43 expression, astrocyte density and morphology, and RGC death in wild-type and Cx43KO mice after I/R injury were determined using immunohistochemistry and Western blotting. Visual function was assessed using ERG recordings. GJ coupling and hemichannel activity were evaluated using tracer coupling and uptake studies, respectively. Results: Loss of RGCs in I/R injury was accompanied by an increase of Cx43 expression in astrocytes. Functional studies indicated that I/R injury augmented astrocytic GJ coupling but not Cx43 hemichannel activity. Importantly, deletion of astrocytic Cx43 improved neuronal survival in acute ischemia but did not affect RGC function in the absence of injury. In support, pharmacologic inhibition of GJ coupling provided neuroprotection in I/R injury. Conclusions: The increase in Cx43 expression and GJ coupling during acute I/R injury exacerbates RGC loss. Inhibition of astrocytic Cx43 channels might represent a useful strategy to promote RGC survival in pathologic conditions.


Assuntos
Astrócitos/metabolismo , Conexina 43/genética , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/fisiologia , Neuroglia/metabolismo , Traumatismo por Reperfusão/metabolismo , Células Ganglionares da Retina/patologia , Animais , Biotina/análogos & derivados , Biotina/farmacologia , Western Blotting , Sobrevivência Celular , Eletrorretinografia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/patologia , Células Ganglionares da Retina/metabolismo , Ácidos Tri-Iodobenzoicos/farmacologia
5.
Sci Rep ; 9(1): 19, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631135

RESUMO

Mutations in the gene (GJA1) encoding connexin43 (Cx43) are responsible for several rare genetic disorders, including non-syndromic skin-limited diseases. Here we used two different functional expression systems to characterize three Cx43 mutations linked to palmoplantar keratoderma and congenital alopecia-1, erythrokeratodermia variabilis et progressiva, or inflammatory linear verrucous epidermal nevus. In HeLa cells and Xenopus oocytes, we show that Cx43-G8V, Cx43-A44V and Cx43-E227D all formed functional gap junction channels with the same efficiency as wild-type Cx43, with normal voltage gating and a unitary conductance of ~110 pS. In HeLa cells, all three mutations also localized to regions of cell-cell contact and displayed a punctate staining pattern. In addition, we show that Cx43-G8V, Cx43-A44V and Cx43-E227D significantly increase membrane current flow through formation of active hemichannels, a novel activity that was not displayed by wild-type Cx43. The increased membrane current was inhibited by either 2 mM calcium, or 5 µM gadolinium, mediated by hemichannels with a unitary conductance of ~250 pS, and was not due to elevated mutant protein expression. The three Cx43 mutations all showed the same gain of function activity, suggesting that augmented hemichannel activity could play a role in skin-limited diseases caused by human Cx43 mutations.


Assuntos
Conexina 43/genética , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Mutação de Sentido Incorreto , Dermatopatias/genética , Dermatopatias/patologia , Animais , Condutividade Elétrica , Células Epiteliais , Células HeLa , Humanos , Oócitos , Xenopus
6.
Proc Natl Acad Sci U S A ; 115(26): E5934-E5943, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891713

RESUMO

Degeneration of retinal astrocytes precedes hypoxia-driven pathologic neovascularization and vascular leakage in ischemic retinopathies. However, the molecular events that underlie astrocyte loss remain unclear. Astrocytes abundantly express connexin 43 (Cx43), a transmembrane protein that forms gap junction (GJ) channels and hemichannels. Cx channels can transfer toxic signals from dying cells to healthy neighbors under pathologic conditions. Here we show that Cx43 plays a critical role in astrocyte apoptosis and the resulting preretinal neovascularization in a mouse model of oxygen-induced retinopathy. Opening of Cx43 hemichannels was not observed following hypoxia. In contrast, GJ coupling between astrocytes increased, which could lead to amplification of injury. Accordingly, conditional deletion of Cx43 maintained a higher density of astrocytes in the hypoxic retina. We also identify a role for Cx43 phosphorylation in mediating these processes. Increased coupling in response to hypoxia is due to phosphorylation of Cx43 by casein kinase 1δ (CK1δ). Suppression of this phosphorylation using an inhibitor of CK1δ or in site-specific phosphorylation-deficient mice similarly protected astrocytes from hypoxic damage. Rescue of astrocytes led to restoration of a functional retinal vasculature and lowered the hypoxic burden, thereby curtailing neovascularization and neuroretinal dysfunction. We also find that absence of astrocytic Cx43 does not affect developmental angiogenesis or neuronal function in normoxic retinas. Our in vivo work directly links phosphorylation of Cx43 to astrocytic coupling and apoptosis and ultimately to vascular regeneration in retinal ischemia. This study reveals that targeting Cx43 phosphorylation in astrocytes is a potential direction for the treatment of proliferative retinopathies.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Regeneração , Vasos Retinianos/fisiologia , Vitreorretinopatia Proliferativa/metabolismo , Animais , Apoptose , Astrócitos/patologia , Caseína Quinase Idelta/metabolismo , Hipóxia Celular , Sobrevivência Celular , Feminino , Masculino , Camundongos , Fosforilação , Vitreorretinopatia Proliferativa/patologia , Vitreorretinopatia Proliferativa/fisiopatologia
7.
Biochim Biophys Acta Biomembr ; 1860(1): 192-201, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28457858

RESUMO

Gap junctions and hemichannels comprised of connexins impact many cellular processes. Significant advances in our understanding of the functional role of these channels have been made by the identification of a host of genetic diseases caused by connexin mutations. Prominent features of connexin disorders are the inability of other connexins expressed in the same cell type to compensate for the mutated one, and the ability of connexin mutants to dominantly influence the activity of other wild-type connexins. Functional studies have begun to identify some of the underlying mechanisms whereby connexin channel mutation contributes to the disease state. Detailed mechanistic understanding of these functional differences will help to facilitate new pathophysiology driven therapies for the diverse array of connexin genetic disorders. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Assuntos
Conexinas/genética , Conexinas/metabolismo , Doenças Genéticas Inatas , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Doenças Genéticas Inatas/terapia , Humanos
8.
Invest Ophthalmol Vis Sci ; 57(13): 5714-5722, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787559

RESUMO

PURPOSE: Many proteins in the lens undergo extensive posttranslational modifications (PTMs) with age, leading to alterations in their function. The extent to which lens gap junction proteins, Cx46 and Cx50, accumulate PTMs with aging is not known. In this study, we identified truncations in Cx46 and Cx50 in the human lens using mass spectrometry. We also examined the effect of truncations on channel function using electrophysiological measurements. METHODS: Human lenses were dissected into cortex, outer nucleus, and nucleus regions, and fiber cell membranes were subjected to trypsin digestion. Tryptic peptides were analyzed by liquid chromatography (LC)-electrospray tandem mass spectrometry (ESI/MS/MS). Effects of truncations on channel conductance, permeability, and gating were assessed in transfected cells. RESULTS: Cleavage sites were identified in the C-terminus, the cytoplasmic loop, and the N-terminus of Cx46 and Cx50. Levels of C-terminal truncations, which were found at residues 238 to 251 in Cx46 and at residues 238 to 253 and 274 to 284 in Cx50, were similar in different lens regions. In contrast, levels of truncations in cytoplasmic loop and N-terminal domains of Cx46 and Cx50 increased dramatically from outer cortex to nucleus. Most of the C-terminally truncated proteins were functional, whereas truncations in the cytoplasmic loop did not result in the formation of functional channels. CONCLUSIONS: Accumulation of cytoplasmic loop and N-terminal truncations in the core might lead to decreases in coupling with age. This reduction is expected to lead to an increase in intracellular calcium and a decrease in levels of glutathione in the nucleus. These changes may ultimately lead to age-related nuclear cataracts.


Assuntos
Envelhecimento/metabolismo , Catarata/metabolismo , Conexinas/metabolismo , Cristalino/metabolismo , Catarata/diagnóstico , Permeabilidade da Membrana Celular , Células Cultivadas , Humanos , Cristalino/patologia , Glicoproteínas de Membrana , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Espectrometria de Massas em Tandem
9.
J Gen Physiol ; 148(1): 25-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27353444

RESUMO

Connexin 26 (Cx26) is a transmembrane protein that forms hexameric hemichannels that can function when unopposed or dock to form intercellular gap junction channels. Aberrantly functioning unopposed hemichannels are a common feature of syndromic deafness associated with mutations in Cx26. In this study, we examine two different mutations at the same position in the N-terminal domain of Cx26, N14K and N14Y, which have been reported to produce different phenotypes in patients. We find that both N14K and N14Y, when expressed alone or together with wild-type (WT) Cx26, result in functional hemichannels with widely disparate functional properties. N14K currents are robust, whereas N14Y currents are small. The two mutants also exhibit opposite shifts in voltage-dependent loop gating, such that activation of N14K and N14Y is shifted in the hyperpolarizing and depolarizing directions, respectively. Deactivation kinetics suggests that N14K stabilizes and N14Y destabilizes the open state. Single N14K hemichannel recordings in low extracellular Ca(2+) show no evidence of stable closing transitions associated with loop gating, and N14K hemichannels are insensitive to pH. Together, these properties cause N14K hemichannels to be particularly refractory to closing. Although we find that the unitary conductance of N14K is indistinguishable from WT Cx26, mutagenesis and substituted cysteine accessibility studies suggest that the N14 residue is exposed to the pore and that the differential properties of N14K and N14Y hemichannels likely result from altered electrostatic interactions between the N terminus and the cytoplasmic extension of TM2 in the adjacent subunit. The combined effects that we observe on loop gating and pH regulation may explain the unusual buccal cutaneous manifestations in patients carrying the N14K mutation. Our work also provides new considerations regarding the underlying molecular mechanism of loop gating, which controls hemichannel opening in the plasma membrane.


Assuntos
Conexina 26/genética , Surdez/genética , Junções Comunicantes/metabolismo , Ativação do Canal Iônico/genética , Mutação , Animais , Membrana Celular/metabolismo , Conexina 26/metabolismo , Cristalografia por Raios X , Surdez/metabolismo , Humanos , Xenopus
10.
J Invest Dermatol ; 135(4): 1033-1042, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25229253

RESUMO

Keratitis-ichthyosis-deafness (KID) syndrome is an ectodermal dysplasia caused by dominant mutations of connexin26 (Cx26). Loss of Cx26 function causes nonsyndromic sensorineural deafness, without consequence in the epidermis. Functional analyses have revealed that a majority of KID-causing mutations confer a novel expansion of hemichannel activity, mediated by connexin channels in a nonjunctional configuration. Inappropriate Cx26 hemichannel opening is hypothesized to compromise keratinocyte integrity and epidermal homeostasis. Pharmacological modulators of Cx26 are needed to assess the pathomechanistic involvement of hemichannels in the development of hyperkeratosis in KID syndrome. We have used electrophysiological assays to evaluate small-molecule analogs of quinine for suppressive effects on aberrant hemichannel currents elicited by KID mutations. Here, we show that mefloquine (MFQ) inhibits several mutant hemichannel forms implicated in KID syndrome when expressed in Xenopus laevis oocytes (IC50∼16 µM), using an extracellular divalent cation, zinc (Zn(++)), as a nonspecific positive control for comparison (IC50∼3 µM). Furthermore, we used freshly isolated transgenic keratinocytes to show that micromolar concentrations of MFQ attenuated increased macroscopic membrane currents in primary mouse keratinocytes expressing human Cx26-G45E, a mutation that causes a lethal form of KID syndrome.


Assuntos
Conexinas/genética , Mefloquina/farmacologia , Animais , Cátions , Conexina 26 , Conexinas/metabolismo , Eletrofisiologia , Epiderme/metabolismo , Homeostase , Humanos , Concentração Inibidora 50 , Queratinócitos/citologia , Ceratite/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Oócitos/citologia , Técnicas de Patch-Clamp , Xenopus , Xenopus laevis , Zinco/química
11.
J Biol Chem ; 289(47): 32694-702, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25294879

RESUMO

Maintenance of adequate levels of glutathione (GSH) in the lens nucleus is critical for protection of lens proteins from the effects of oxidative stress and for lens transparency. How GSH is transported to the nucleus is unknown. We show that GSH diffuses to the nucleus from the outer cortex, where a high concentration of the anti-oxidant is established by synthesis or uptake, via the network of gap junctions. Using electrophysiological measurements, we found that channels formed by Cx46 and Cx50, the two connexin isoforms expressed in the lens, were moderately cation-selective (P(Na)/P(Cl) ∼5 for Cx46 and ∼3 for Cx50). Single channel permeation of the larger GSH anion was low but detectable (P(Na)/P(GSH) ∼12 for Cx46 and ∼8 for Cx50), whereas permeation of divalent anion glutathione disulfide (GSSG) was undetectable. Measurement of GSH levels in the lenses from connexin knock-out (KO) mice indicated Cx46, and not Cx50, is necessary for transport of GSH to the core. Levels of GSH in the nucleus were markedly reduced in Cx46 KO, whereas they were unaffected by Cx50 KO. We also show that GSH delivery to the nucleus is not dependent on the lens microcirculation, which is believed to be responsible for extracellular transport of other nutrients to membrane transporters in the core. These results indicate that glutathione diffuses from cortical fiber cells to the nucleus via gap junction channels formed by Cx46. We present a model of GSH diffusion from outer cells to inner fiber cells through gap junctions.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Glutationa/metabolismo , Cristalino/metabolismo , Algoritmos , Animais , Transporte Biológico , Linhagem Celular Tumoral , Conexinas/genética , Difusão , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Junções Comunicantes/fisiologia , Dissulfeto de Glutationa/metabolismo , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Xenopus
12.
J Ophthalmic Vis Res ; 9(1): 148-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24982749
13.
J Biol Chem ; 289(31): 21519-32, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24939841

RESUMO

Excessive opening of undocked Cx26 hemichannels in the plasma membrane is associated with disease pathogenesis in keratitis-ichthyosis-deafness (KID) syndrome. Thus far, excessive opening of KID mutant hemichannels has been attributed, almost solely, to aberrant inhibition by extracellular Ca(2+). This study presents two new possible contributing factors, pH and Zn(2+). Plasma pH levels and micromolar concentrations of Zn(2+) inhibit WT Cx26 hemichannels. However, A40V KID mutant hemichannels show substantially reduced inhibition by these factors. Using excised patches, acidification was shown to be effective from either side of the membrane, suggesting a protonation site accessible to H(+) flux through the pore. Sensitivity to pH was not dependent on extracellular aminosulfonate pH buffers. Single channel recordings showed that acidification did not affect unitary conductance or block the hemichannel but rather promoted gating to the closed state with transitions characteristic of the intrinsic loop gating mechanism. Examination of two nearby KID mutants in the E1 domain, G45E and D50N, showed no changes in modulation by pH or Zn(2+). N-bromo-succinimide, but not thiol-specific reagents, attenuated both pH and Zn(2+) responses. Individually mutating each of the five His residues in WT Cx26 did not reveal a key His residue that conferred sensitivity to pH or Zn(2+). From these data and the crystal structure of Cx26 that suggests that Ala-40 contributes to an intrasubunit hydrophobic core, the principal effect of the A40V mutation is probably a perturbation in structure that affects loop gating, thereby affecting multiple factors that act to close Cx26 hemichannels via this gating mechanism.


Assuntos
Conexinas/antagonistas & inibidores , Surdez/genética , Ictiose/genética , Ceratite/genética , Mutação , Zinco/farmacologia , Animais , Conexina 26 , Conexinas/genética , Conexinas/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Xenopus
14.
Am J Physiol Cell Physiol ; 306(3): C212-20, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24005045

RESUMO

Mutations in connexin50 (Cx50) cause dominant cataracts in both humans and mice. The exact mechanisms by which mutations cause these variable phenotypes are poorly understood. We have examined the functional properties of gap junctions made by three Cx50 mutations, V44E, D47N, and V79L, expressed in mammalian cell lines. V44E trafficked to the plasma membrane properly and formed gap junctional plaques. However, the mutant did not form functional gap junctions when expressed alone, or with wild-type (WT) Cx46 and Cx50, indicating that V44E is a dominant negative inhibitor of WT connexin function. In contrast, D47N subunits did not localize to junctional plaques or form functional homotypic gap junctions; however, mixed expression of D47N and WT subunits of either Cx50 or Cx46 resulted in functional intercellular channels, with high levels of coupling. Single-channel studies indicated that D47N formed heteromeric channels with WT Cx46 with unique properties. Unlike either V44E or D47N, V79L formed functional homotypic intercellular channels. However, the mutation caused an alteration in voltage gating and a dramatic reduction in the single-channel open probability, resulting in much lower levels of conductance in cells expressing V79L alone, or together with WT connexin subunits. Thus, each mutation produced distinct changes in the properties of junctional coupling. V44E failed to form intercellular channels in any configuration, D47N formed only heteromeric channels with WT connexins, and V79L formed homotypic and heteromeric channels with altered properties. These results suggest that unique interactions between mutant and wild-type lens connexins might underlie the development of various cataract phenotypes in humans.


Assuntos
Catarata/congênito , Catarata/genética , Conexinas/genética , Proteínas do Olho/genética , Animais , Linhagem Celular , Junções Comunicantes/genética , Junções Comunicantes/fisiologia , Células HeLa , Humanos , Cristalino/metabolismo , Cristalino/fisiologia , Camundongos , Mutação de Sentido Incorreto/genética , Técnicas de Patch-Clamp , Ratos
15.
J Gen Physiol ; 142(1): 3-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23797419

RESUMO

Mutations in the GJB2 gene, which encodes Cx26, are the most common cause of sensorineural deafness. In syndromic cases, such as keratitis-ichthyosis-deafness (KID) syndrome, in which deafness is accompanied by corneal inflammation and hyperkeratotic skin, aberrant hemichannel function has emerged as the leading contributing factor. We found that D50N, the most frequent mutation associated with KID syndrome, produces multiple aberrant hemichannel properties, including loss of inhibition by extracellular Ca(2+), decreased unitary conductance, increased open hemichannel current rectification and voltage-shifted activation. We demonstrate that D50 is a pore-lining residue and that negative charge at this position strongly influences open hemichannel properties. Examination of two putative intersubunit interactions involving D50 suggested by the Cx26 crystal structure, K61-D50 and Q48-D50, showed no evidence of a K61-D50 interaction in hemichannels. However, our data suggest that Q48 and D50 interact and disruption of this interaction shifts hemichannel activation positive along the voltage axis. Additional shifts in activation by extracellular Ca(2+) remained in the absence of a D50-Q48 interaction but required an Asp or Glu at position 50, suggesting a separate electrostatic mechanism that critically involves this position. In gap junction (GJ) channels, D50 substitutions produced loss of function, whereas K61 substitutions functioned as GJ channels but not as hemichannels. These data demonstrate that D50 exerts effects on Cx26 hemichannel and GJ channel function as a result of its dual role as a pore residue and a component of an intersubunit complex in the extracellular region of the hemichannel. Differences in the effects of substitutions in GJ channels and hemichannels suggest that perturbations in structure occur upon hemichannel docking that significantly impact function. Collectively, these data provide insight into Cx26 structure-function and the underlying bases for the phenotypes associated with KID syndrome patients carrying the D50N mutation.


Assuntos
Conexinas/genética , Conexinas/metabolismo , Surdez/genética , Ictiose/genética , Ceratite/genética , Mutação de Sentido Incorreto , Potenciais de Ação , Sequência de Aminoácidos , Animais , Cálcio/farmacologia , Conexina 26 , Conexinas/antagonistas & inibidores , Conexinas/química , Humanos , Ativação do Canal Iônico , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Eletricidade Estática , Xenopus
16.
Neuropharmacology ; 75: 517-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23597508

RESUMO

Gap junction channels and hemichannels formed by the connexin family of proteins play important roles in many aspects of tissue homeostasis in the brain and in other organs. In addition, connexin channels have been proposed as pharmacological targets in the treatment of a number of human disorders. In this review, we describe the connexin-subtype selectivity and specificity of pharmacological agents that are commonly used to modulate connexin channels. We also highlight recent progress made toward identifying new agents for connexin channels that act in a selective and specific manner. Finally, we discuss developing insights into possible mechanisms by which these agents modulate connexin channel function. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/fisiologia , Canais Iônicos/fisiologia , Animais , Conexinas/antagonistas & inibidores , Conexinas/química , Junções Comunicantes/efeitos dos fármacos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia
17.
J Membr Biol ; 245(8): 453-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22825713

RESUMO

Connexins form channels with large aqueous pores that mediate fluxes of inorganic ions and biological signaling molecules. Studies aimed at identifying the connexin pore now include a crystal structure that provides details of putative pore-lining residues that need to be verified using independent biophysical approaches. Here we extended our initial cysteine-scanning studies of the TM1/E1 region of Cx46 hemichannels to include TM2 and TM3 transmembrane segments. No evidence of reactivity was observed in either TM2 or TM3 probed with small or large thiol-modifying reagents. Several identified pore residues in E1 of Cx46 have been verified in different Cx isoforms. Use of variety of thiol reagents indicates that the connexin hemichannel pore is large and flexible enough, at least in the extracellular part of the pore funnel, to accommodate uncommonly large side chains. We also find that that gating characteristics are largely determined by the same domains that constitute the pore. These data indicate that biophysical and structural studies are converging towards a view that the N-terminal half of the Cx protein contains the principal components of the pore and gating elements, with NT, TM1 and E1 forming the pore funnel.


Assuntos
Conexinas/química , Conexinas/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Animais , Células Cultivadas , Humanos , Porosidade , Relação Estrutura-Atividade , Xenopus laevis
18.
Front Pharmacol ; 3: 106, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685432

RESUMO

The paucity of specific pharmacological agents has been a major impediment for delineating the roles of gap junction (GJ) channels formed by connexin proteins in physiology and pathophysiology. Here, we used the selective optimization of side activities (SOSA) approach, which has led to the design of high affinity inhibitors of other ion channels, to identify a specific inhibitor for channels formed by Cx50, a connexin subtype that is primarily expressed in the lens. We initially screened a library of common ion channel modulating pharmacophores for their inhibitory effects on Cx50 GJ channels, and identified four new classes of compounds. The triarlymethane (TRAM) clotrimazole was the most potent Cx50 inhibitor and we therefore used it as a template to explore the structure activity relationship (SAR) of the TRAMs for Cx50 inhibition. We describe the design of T122 (N-[(2-methoxyphenyl)diphenylmethyl]-1,3-thiazol-2-amine) and T136 (N-[(2-iodophenyl)diphenylmethyl]-1,3-thiazol-2-amine), which inhibit Cx50 with IC(50)s of 1.2 and 2.4 µM. Both compounds exhibit at least 10-fold selectivity over other connexins as well as major neuronal and cardiac voltage-gated K(+) and Na(+) channels. The SAR studies also indicated that the TRAM pharmacophore required for connexin inhibition is significantly different from the pharmacophore required for blocking the calcium-activated KCa3.1 channel. Both T122 and T136 selectively inhibited Cx50 GJ channels in lens epithelial cells, suggesting that they could be used to further explore the role of Cx50 in the lens. In addition, our results indicate that a similar approach may be used to find specific inhibitors of other connexin subtypes.

19.
Circulation ; 125(3): 474-81, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22179534

RESUMO

BACKGROUND: An estimated 10% to 15% of sudden infant death syndrome (SIDS) cases may stem from channelopathy-mediated lethal arrhythmias. Loss of the GJA1-encoded gap junction channel protein connexin43 is known to underlie formation of lethal arrhythmias. GJA1 mutations have been associated with cardiac diseases, including atrial fibrillation. Therefore, GJA1 is a plausible candidate gene for premature sudden death. METHODS AND RESULTS: GJA1 open reading frame mutational analysis was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing on DNA from 292 SIDS cases. Immunofluorescence and dual whole-cell patch-clamp studies were performed to determine the functionality of mutant gap junctions. Immunostaining for gap junction proteins was performed on SIDS-associated paraffin-embedded cardiac tissue. Two rare, novel missense mutations, E42K and S272P, were detected in 2 of 292 SIDS cases, a 2-month-old white boy and a 3-month-old white girl, respectively. Analysis of the E42K victim's parental DNA demonstrated a de novo mutation. Both mutations involved highly conserved residues and were absent in >1000 ethnically matched reference alleles. Immunofluorescence demonstrated no trafficking abnormalities for either mutation, and S272P demonstrated wild-type junctional conductance. However, junctional conductance measurements for the E42K mutation demonstrated a loss of function not rescued by wild type. Moreover, the E42K victim's cardiac tissue demonstrated a mosaic immunostaining pattern for connexin43 protein. CONCLUSIONS: This study provides the first molecular and functional evidence implicating a GJA1 mutation as a novel pathogenic substrate for SIDS. E42K-connexin43 demonstrated a trafficking-independent reduction in junctional coupling in vitro and a mosaic pattern of mutational DNA distribution in deceased cardiac tissue, suggesting a novel mechanism of connexin43-associated sudden death.


Assuntos
Conexina 43/genética , Junções Comunicantes/patologia , Junções Comunicantes/fisiologia , Mutação de Sentido Incorreto , Morte Súbita do Lactente/genética , Morte Súbita do Lactente/patologia , Adulto , Animais , Caderinas/metabolismo , Estudos de Coortes , Conexina 43/metabolismo , Desmoplaquinas/metabolismo , Feminino , Predisposição Genética para Doença/genética , Humanos , Lactente , Masculino , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Transporte Proteico/genética , Ratos
20.
J Gen Physiol ; 139(1): 69-82, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22200948

RESUMO

The anti-malarial drug quinine and its quaternary derivative N-benzylquininium (BQ(+)) have been shown to inhibit gap junction (GJ) channels with specificity for Cx50 over its closely related homologue Cx46. Here, we examined the mechanism of BQ(+) action using undocked Cx46 and Cx50 hemichannels, which are more amenable to analyses at the single-channel level. We found that BQ(+) (300 µM-1 mM) robustly inhibited Cx50, but not Cx46, hemichannel currents, indicating that the Cx selectivity of BQ(+) is preserved in both hemichannel and GJ channel configurations. BQ(+) reduced Cx50 hemichannel open probability (P(o)) without appreciably altering unitary conductance of the fully open state and was effective when added from either extracellular or cytoplasmic sides. The reductions in P(o) were dependent on BQ(+) concentration with a Hill coefficient of 1.8, suggesting binding of at least two BQ(+) molecules. Inhibition by BQ(+) was voltage dependent, promoted by hyperpolarization from the extracellular side and conversely by depolarization from the cytoplasmic side. These results are consistent with binding of BQ(+) in the pore. Substitution of the N-terminal (NT) domain of Cx46 into Cx50 significantly impaired inhibition by BQ(+). The NT domain contributes to the formation of the wide cytoplasmic vestibule of the pore and, thus, may contribute to the binding of BQ(+). Single-channel analyses showed that BQ(+) induced transitions that did not resemble pore block, but rather transitions indistinguishable from the intrinsic gating events ascribed to loop gating, one of two mechanisms that gate Cx channels. Moreover, BQ(+) decreased mean open time and increased mean closed time, indicating that inhibition consists of an increase in hemichannel closing rate as well as a stabilization of the closed state. Collectively, these data suggest a mechanism of action for BQ(+) that involves modulation loop gating rather than channel block as a result of binding in the NT domain.


Assuntos
Conexinas/antagonistas & inibidores , Quinina/análogos & derivados , Quinina/química , Quinina/farmacologia , Animais , Conexinas/química , Conexinas/genética , Conexinas/metabolismo , Citoplasma/metabolismo , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Ativação do Canal Iônico , Camundongos , Oócitos/metabolismo , Ratos , Transfecção , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA